Adipocyte mitochondrial genes and the forkhead factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosiglitazone
نویسندگان
چکیده
BACKGROUND FOXC2 has lately been implicated in diabetes and obesity as well as mitochondrial function and biogenesis and also as a regulator of mtTFA/Tfam. In this study, the expression of FOXC2 and selected genes involved in mitochondrial function and biogenesis in healthy subjects and in a matched cohort with type 2 diabetes patients before and after treatment with rosiglitazone was determined. Quantitative real time PCR was used to analyze both RNA and DNA from biopsies from subcutaneous adipose tissue. METHODS Blood samples and subcutaneous abdominal fat biopsies were collected from 12 T2D patients, of which 11 concluded the study, pre-treatment and 90 days after initiation of rosiglitazone treatment, and from 19 healthy control subjects on the first and only visit from healthy subjects. Clinical parameters were measured on the blood samples. RNA and DNA were prepared from the fat biopsies and gene expression was measured with real time PCR. RESULTS The expression level of genes in the mitochondrial respiratory complexes I - IV were significantly downregulated in the diabetic patients and restored in response to rosiglitazone treatment. Rosiglitazone treatment also increased the relative number of mitochondria in diabetic patients compared with controls. Furthermore, the transcription factors FOXC2 and mtTFA/Tfam displayed a response pattern identical to the mitochondrial genes. CONCLUSIONS FOXC2, mtTFA/Tfam and subunits of the respiratory complexes I - IV show equivalent regulation in gene expression levels in response to TZD treatment. This, together with the knowledge that FOXC2 has a regulatory function of mtTFA/Tfam and mitochondrial biogenesis, suggests that FOXC2 has a possible functional role in the TZD activated mitochondrial response.
منابع مشابه
The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function
OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expr...
متن کاملFOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance
Obesity, hyperlipidemia, and insulin resistance are common forerunners of type 2 diabetes mellitus. We have identified the human winged helix/forkhead transcription factor gene FOXC2 as a key regulator of adipocyte metabolism. Increased FOXC2 expression, in adipocytes, has a pleiotropic effect on gene expression, which leads to a lean and insulin sensitive phenotype. FOXC2 affects adipocyte met...
متن کاملAdipocyte-specific overexpression of FOXC2 prevents diet-induced increases in intramuscular fatty acyl CoA and insulin resistance.
Insulin resistance plays a major role in the development of type 2 diabetes and may be causally associated with increased intracellular fat content. Transgenic mice with adipocyte-specific overexpression of FOXC2 (forkhead transcription factor) have been generated and shown to be protected against diet-induced obesity and glucose intolerance. To understand the underlying mechanism, we examined ...
متن کاملOver Expression of FOXO1 in Subcutaneous Fatty Tissue and its Response to Resistance Training in High Fat Diet and Type 2 Diabetic Rat
Objective: Forkhead box proteins and Forkhead box transcription factor O1 (FOXO1) in particular, mediate insulin signaling pathways and glucose homeostasis. This study aimed to compare FOXO1 expression in subcutaneous adipose (SA) tissue between obese rats with and without type 2 diabetes (T2D) and its response to resistance training in T2D. Materials and Methods: 21 male wistar rats (220±20 g...
متن کاملTwo Lung Cancer Development-Related Genes, Forkhead Box M1 (FOXM1) and Apolipoprotein E (APOE), are overexpressed in Bronchial of Patients after Long-Term Exposure to Sulfur Mustard
Sulfur mustard (SM) is a strong alkylating and mutagenic compound that targets humanairway system. We considered the expression of Forkhead box M1 (FOXM1) and apolipoproteinE (APOE) genes, which are responsible for cell proliferation, differentiation, tumorigenesis,and increased risk of lung cancer, in the lung bronchial tissue of patients exposed to SM.After performing pulmonary functional tes...
متن کامل